ESSACE Towards European Licensing of Small Modular Reactors

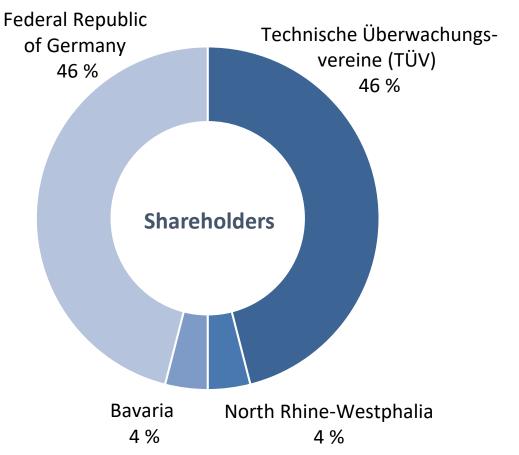
Advanced and innovative safety features of LW-SMRs

Sebastian Buchholz, ELSMOR WP1 Lead – GRS

Contents

- GRS
- General overview
- Inherent safety features
- Passive safety systems
- Systems for
 - Residual heat removal
 - Emergency core cooling
 - Primary depressurisation
 - Containment pressure control
- Defence against external hazards
- Severe accidents
- Conclusions

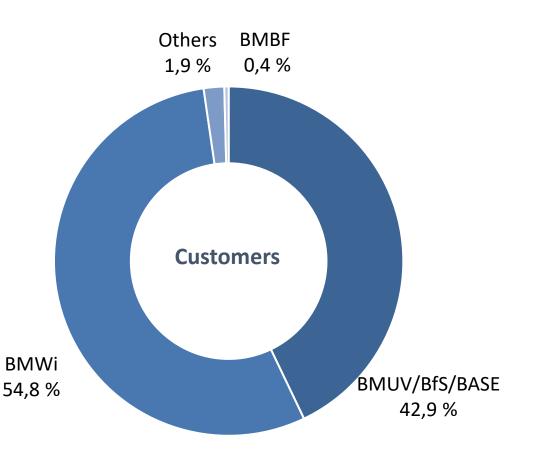
Overview GRS



ELSMOR | International Summer School

GRS – Company and Stakeholders

- Germany's central expert organisation in the field of nuclear safety since 1977
- Non-profit and independent research organisation
- German Technical Safety Organisation (TSO) and member of European Technical Safety Organisations Network (ETSON)



ELSM

GRS – Customers

- Main customers are Ministries (e.g. Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection) and Federal Offices (e.g. Federal Office for Safety of Nuclear Waste Management)
- International: European Commission, nuclear regulatory authorities of various countries
- Annual volume of orders around 53 Mio. € (2020)

ELSM



GRS – Competencies

We carry out research and developent and provide expert advice to authorities in the fields of:

- Reactor safety
- Storage and final disposal of radioactive waste
- Decommissioning & Dismantling

- Physical protection
- Radiation protection
- Environment & Energy

ELSMOR

General Overview

ELSMOR | International Summer School

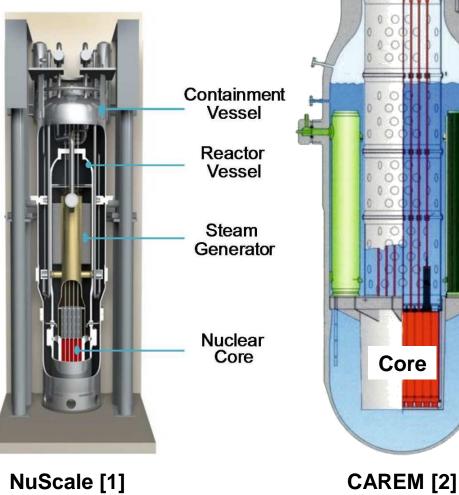
General Overview

- Cost reduction driving force for
 - Smaller reactors
 - Simplification of the designs

- Protection against ionising radiation
 - Reactivity control
 - Cooling of the core
 - Confinement of radioactive material

- Inherent safety features
- Passive safety features
- Other innovative features

ELSMOR


Inherent Safety Features

ELSMOR | International Summer School

- Low position of the core in the RPV
- Large water inventory above the core
 - Larger time during LOCA until core becomes dry
- Reliable, effective heat removal by
 - Reduced power density (- 25 % compared with current PWR)
 - Smaller distance between core and RPV wall
 - Larger surface to volume ratio

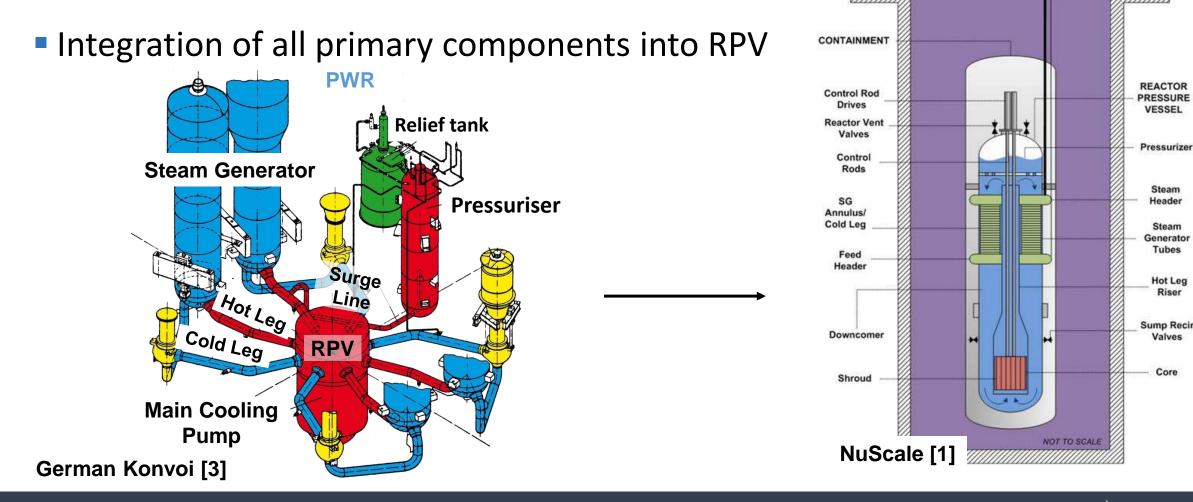
Core

ELSMO

- No dissolved boron in some designs (e.g. NUWARD, Rolls Royce SMR)
 - Elimination of deboration accident
 - Reactivity control by control rods and burnable absorbers only
 → Possible challenges for safety demonstration
 - Depletion of absorbers at end of cycle might lead to reactivity peaks
 - Prediction of depletion of heavy used control rods difficult
 - Quick depletion of common Ag-In-Cd control rods if inserted deep in the core
 - Heat conductivity and density of fuel changed if absorbers are integrated in the fuel
 - Higher effective rod worth of control rods in case of a REA

- High burnups needed to reach long fuel cycles
 - Reached by heavy use of burnable absorbers and (in some designs) higher enriched fuels (> 5 %)
 Draliferation issues
 - \rightarrow Proliferation issues

Name	Power [MW _{th}]	Boron Acid	Burnable Absorber	Planned FE-Cycle [M]	Planned Burnup [MWd/kg _u]	Power density [kW/l]	Enrich- ment
ACP100	385	х	х	24	< 52	?	< 4.95 %
ACPR50S	200	х	х	30	< 52	?	< 5.00 %
CAREM	100	х	x	18	24	?	3.1 %
KLT-40S	150	-	х	30 – 36	45.4	117.8	< 20 %
NuScale	160	х	x	24	30 – 50	?	< 4.95 %
RITM-200	175	?	?	54 – 84	68 – 51	?	~ 20 %
Rolls Royce SMR	1276	-	Х	18 – 24	55 – 60	?	< 4.95 %
SMART	330	х	х	36	< 60	62.6	< 5.00 %
VBER-300	917	х	x	72	47	21.3	< 5.00 %
VK-300	750	-	х	72	41.4	?	4.00 %


Shorter cores (e.g. active height 4.2 m EPR, 2.0 m NuScale)

- Correlations for critical heat flux depend on entry length
 → CHF might be less important
- Smaller cores (e.g. 241 FE in EPR \rightarrow 37 FE in NuScale)
 - Higher leakage
 - \rightarrow Heavy reflector around the core necessary
 - → Might affect validity of widely used diffusion approximation to neutron transport equation
- Use of accident tolerant fuel (ATF)
 - Potentially higher safety margins
 - Subject of active and ongoing research

ELSN

Inherent safety features – Integral design

Inherent safety features – Integral design

Integration of all primary components into RPV

- Absence of large coolant pipes limits maximum possible LOCA size
 - Maximum break size PWR: DN800 \rightarrow 1 m²
 - Maximum break size CAREM: DN30 \rightarrow 0.0014 m²
- Minimisation of number of connected pipes on RPV
- Connection nozzles above core
- High and narrow RPV \rightarrow good for natural circulation
- Integration of control rod drive mechanisms (CRDM) practically eliminates rod ejection accident due to lower pressure difference

IELSN

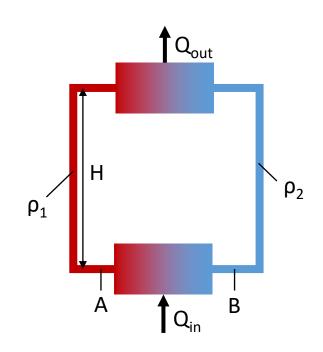
ELSMOR

Passive Safety Features

ELSMOR | International Summer School

General

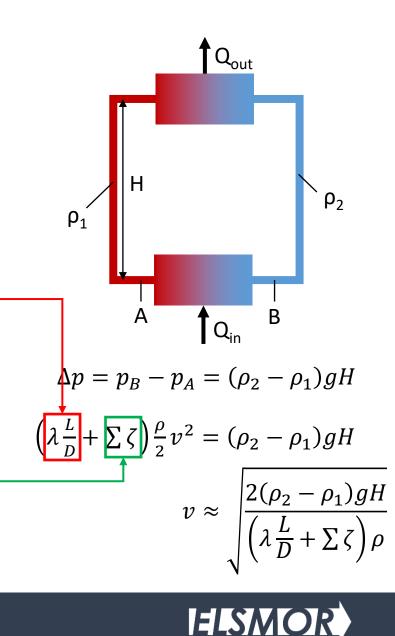
- No external power needed
- Based on small driving forces
 - Convection
 - Evaporation/condensation
 - Gravity
- Classification depends on national regulatory practice


Definition	Category					
IAEA	А	В	С	D		
Moving fluid	-	х	х	x		
Moving mechanical parts	-	-	х	х		
Signals	-	-	-	х		
External energy source	-	-	-	-		
German Regulations	Passive	system	Active system			

ELSM

Natural circulation

- Both vertical pipes filled with fluids of different densities → one column heavier than the other
- Equalisation by flow of heavy media to lighter column
- No equalisation, if heat is added and removed
 - Steady flow
 - Heat source must be below heat sink
 - Pressure difference Δp drives the flow



$$\Delta p = p_B - p_A = (\rho_2 - \rho_1)gH$$

Natural circulation

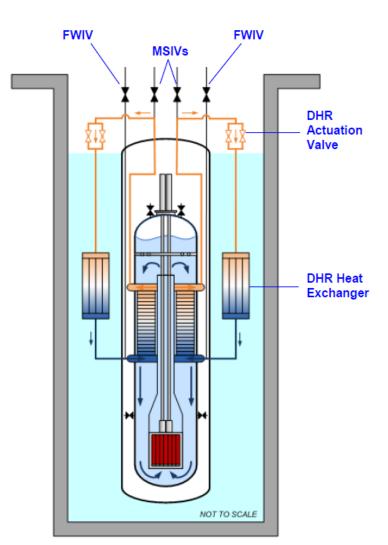
- Enhanced, if coolant is evaporated ($\rho_1 << \rho_2$)
- Balance of flow by pressure losses
 - Friction losses (on pipes, etc.)
 - Form losses
 - Bends
 - Flow path expansions/restriction
 - Valves
 - Blends
 - ...

- Safety demonstration can be challenging
 - Small driving forces with high uncertainties
 - Small changes in boundary conditions can influence the system behaviour
 - Non-linear characteristics can lead to several distinct operating regimes depending also on overall plant feedbacks
 - Testing under plant conditions needed but difficult sometimes
 - Non-condensable gases affect heat transfer
 - Model uncertainties in evidence tools (simulation codes)
 - Lack of high-precision models (e.g. pressure losses, heat transfer) in simulation
 - Too efficient operating regimes can be as problematic as ineffective one (e.g. a subcooling transient)

ELSMOR


Residual Heat Removal

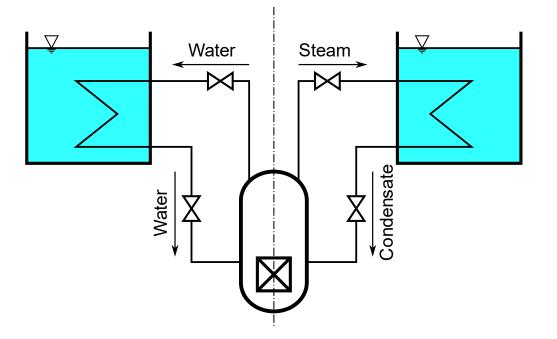
ELSMOR | International Summer School


- Cooled by secondary side
 - Passively within water pool
 - ACPR50S, CAREM, IMR, IRIS, KLT-40S, NuScale, RITM-200, SMART, VBER-300, VK-300
 - Passively on air
 - IMR, mPower, NuScale, RITM-200
 - Actively by main heat sink
- Primary side
- Other active systems

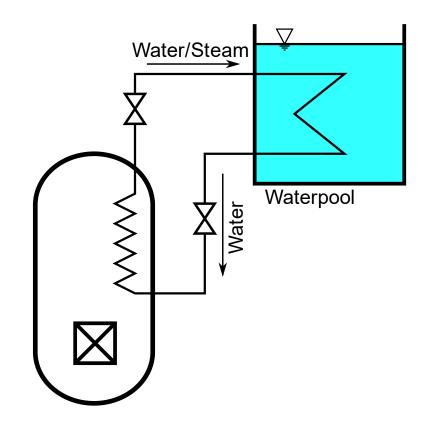
ELSMOR

- Cooled by secondary side
 - Passively within water pool
 - ACPR50S, CAREM, IMR, IRIS, KLT-40S, NuScale, RITM-200, SMART, VBER-300, VK-300
 - Passively on air
 - IMR, mPower, NuScale, RITM-200
 - Actively by main heat sink
- Primary side
- Other active systems

NuScale [4]

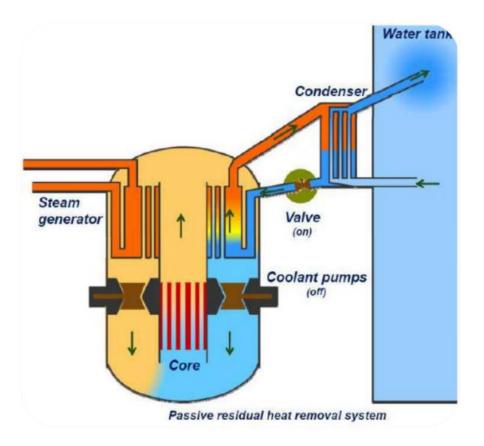


- Cooled by secondary side
 - Passively within water pool
 - Passively on air
 - Actively by main heat sink
 - All
- Primary side
- Other active systems



- Cooled by secondary side
- Primary side
 - Passively within water pool
 - ACP100, Flexblue, mPower, DHR-400
 - Passively with extra circuit
 - Actively by purification system
- Other active systems

- Cooled by secondary side
- Primary side
 - Passively within water pool
 - Passively with extra circuit
 - SMR-160, Westinghouse SMR, NUWARD
 - Actively by purification system
 - RITM-200
- Other active systems
 - Flexblue, IMR, Rolls Royce SMR

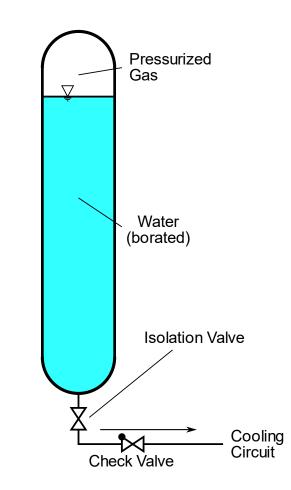


- Cooled by secondary side
- Primary side
 - Passively within water pool
 - Passively with extra circuit
 - SMR-160, Westinghouse SMR, NUWARD
 - Actively by purification system
 - RITM-200
- Other active systems
 - Flexblue, IMR, Rolls Royce SMR

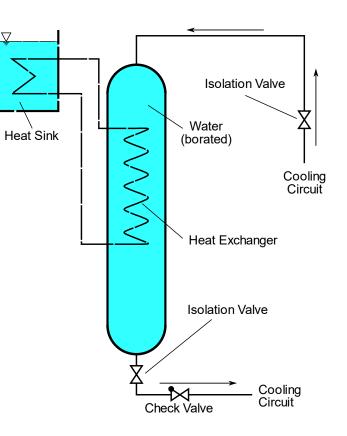
ELSMOR

Emergency Core Cooling

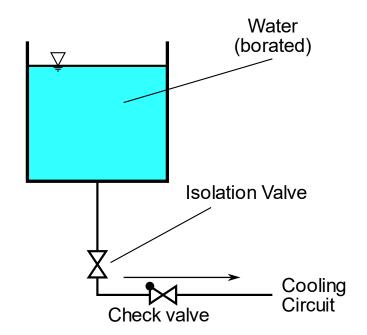
ELSMOR | International Summer School


Active systems

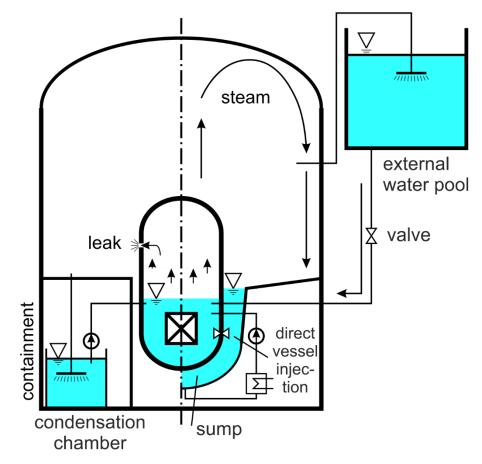
- CAREM, Flexblue, KLT-40S, VBER-300, VK-300, SMR-160, RITM-200, SNP350
- Passive systems
 - Accumulators
 - Make-up tanks
 - Elevated tanks
 - Long term cooling from sump/pit

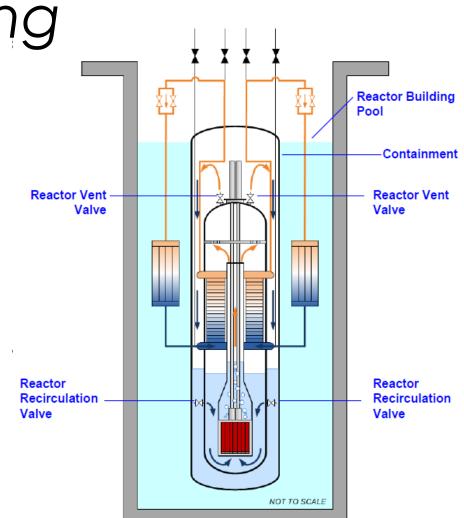

- Active systems
- Passive systems
 - Accumulators
 - ACP100, ACPR50S, CAREM, Flexblue, IMR, IRIS, KLT-40S, mPower, NUWARD, RITM-200, VBER-300, VK-300
 - Make-up tanks
 - Elevated tanks
 - Long term cooling from sump/pit

ELSMO


- Active systems
- Passive systems
 - Accumulators
 - Make-up tanks
 - ACP100, Flexblue, IRIS, KLT-40S, RITM-200, SMART, VBER-300, VK-300, Westinghouse SMR, CAP200
 - Elevated tanks
 - Long term cooling from sump/pit

ELSMO


- Active systems
- Passive systems
 - Accumulators
 - Make-up tanks
 - Elevated tanks
 - ACP100, ACPR50S, CAREM, Flexblue, IRIS mPower, RITM-200, SMART, SMR-160, SNP350, VK-300, Westinghouse SMR
 - Long term cooling from sump/pit


- Active systems
- Passive systems
 - Accumulators
 - Make-up tanks
 - Elevated tanks
 - Long term cooling from sump/pit
 - ACP100, ACPR50S, CAREM, Flexblue, IRIS, RITM-200 SMART, SMR-160, VK-300, Westinghouse SMR, NuScale, NUWARD, DHR-400 (pool-type reactor), CAP200

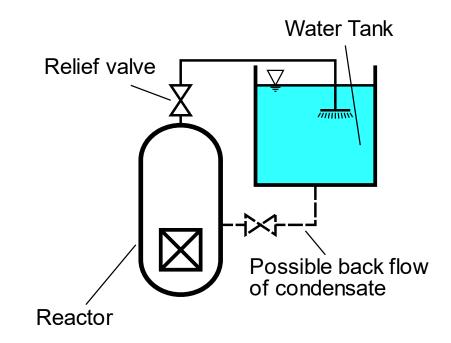
ELSMO

- Active systems
- Passive systems
 - Accumulators
 - Make-up tanks
 - Elevated tanks
 - Long term cooling from sump/pit
 - ACP100, ACPR50S, CAREM, Flexblue, IRIS, RITM-200 SMART, SMR-160, VK-300, Westinghouse SMR, NuScale, NUWARD, DHR-400 (pool-type reactor), CAP200

NuScale [4]

ELSMOR

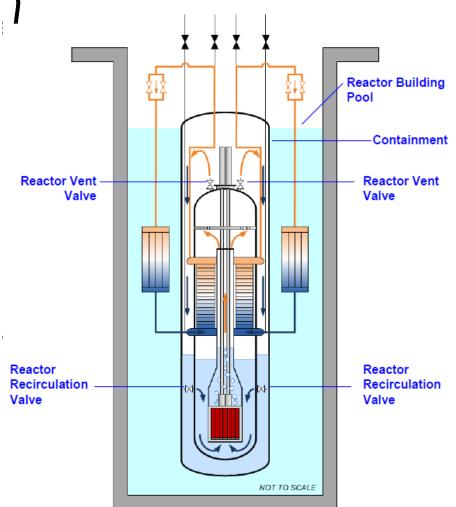
Primary Depressurisation



ELSMOR | International Summer School

Primary depressurisation

- Depressurisation into pool
 - ACP100, ACPR50S, CAREM, Flexblue, IRIS, NUWARD, SMR-160, VK-300
- Depressurisation into containment
- Purification and cooldown system



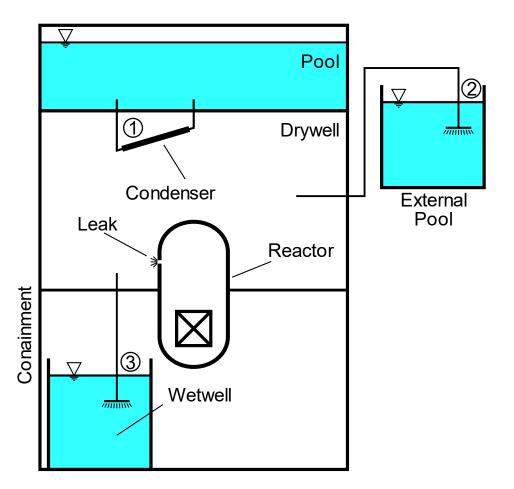
Primary depressurisation

- Depressurisation into pool
- Depressurisation into containment
 - ACP100, IMR, mPower, NuScale, RITM-200, SMART, VBER-300, Westinghouse SMR
- Purification and cooldown system
 - KLT-40S, VBER-300

NuScale [4]

FLSMOR

Containment Pressure Control

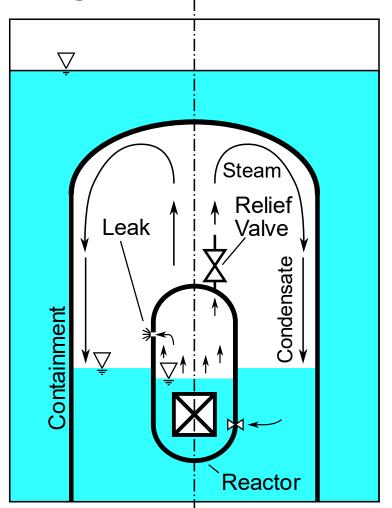


Containment pressure control

Containment condenser (1)

- ACP100, IRIS, KLT-40S, RITM-200, SMART, VBER-300
- Blowdown into pool (2) or wetwell (3)

Flexblue, CAREM, KLT-40S, VK-300



ELSMO

Containment pressure control

- Containment condenser
- Blowdown into pool or wetwell
- Spray into containment atmosphere
 SMART, SNP350
- Condensation on containment inner wall
 - ACP100, ACPR50S, Flexblue, IMR, mPower, NuScale, SMR-160, Westinghouse SMR, CAP200, NUWARD

ELSM

Containment pressure control

Challenges for safety demonstration

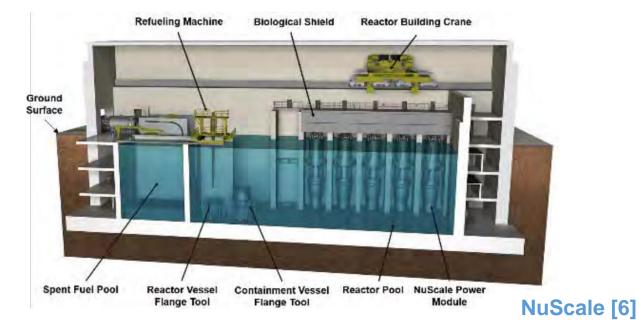
- Impact of non-condensables on condensation heat transfer
- Natural convection on high containment walls when inside a water pool
- Small containments

 \rightarrow High pressures during LOCA expected

- \rightarrow High loads on the containment wall
- (although limited LOCA size)
 - High design pressure for NuScale containment
 - Enhanced heat transfer due to spray, pool, etc.

ELSNOR

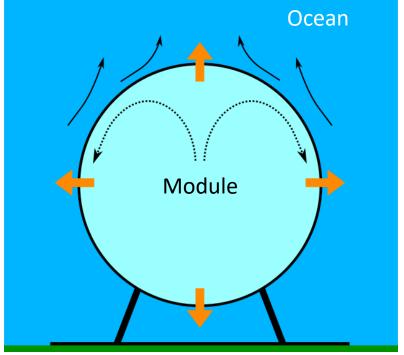
Defence Against External Hazards



Defence against external hazards

Three different approaches against external hazards (earth quake, explosions, air plane crashes, flooding, etc.)

Modules inside large water pools in caverns/below mounds


Defence against external hazards

Floating SMR

- Depending on location no impact of earth quakes and tsunamis
- Ocean works as unlimited heat source
- Transport hazards to be considered
- Sea motion → motion of the barge → impact of Coriolis force must be investigated

SMR on ocean floor

- Control rooms on-shore
- Ocean works as unlimited heat source
- Remote operation required

Flexblue [7]

Severe Accidents

Severe Accidents

- Sequences, events or situations to be practically eliminated which could lead to early and large releases
- Demonstration by:
 - Showing that the sequence is physically impossible by design
 - Demonstrate that the sequence is highly unlikely with high degree of confidence
- Severe accidents are still needed to be investigated, even if practically eliminated

Severe Accidents

- First conceptual versions of severe accident management should be derived during the design of the reactor
- In-vessel melt retention (IVMR) with external cooling preferred against ex-vessel melt retention in most designs
 - Difficult integration of core catcher into compact containment
 - Ex-vessel cooling with recirculation to the vessel already safety feature in some designs

ELSMOR

Conclusions / References

Conclusions

- Large number of SMR designs currently under developed
- Simplification needed to reduce costs and increase safety
 - Size reduction, integration of components into RPV
 - Use of passive safety systems
- Innovative components and passive systems can challenge safety demonstration

References

- [1] IAEA, ARIS database, NuScale Power Modular and Scalable Reactor, <u>https://aris.iaea.org/PDF/NuScale.pdf</u>, July 2013
- [2] Schaffrath, et. al., Berechnung des Notkondensators des argentinischen Integralreaktors CAREM, Jahrestagung Kerntechnik 2003
- [3] Schaffrath, et. al., SMR: kleine modulare Reaktoren Historie aktuelle Tendenzen Merkmale, 46. Kraftwerkstechnisches Kolloquium 2014, Dresden, 15. Oktober 2014
- [4] Colbert, C., Overview of NuScale Design, Presentation, Technical Meeting on Technology Assessment of SMRs for Near-Term Deployment, Chengdu, China, 2.-4. September 2013
- [5] Lee, D., B&W mPower Program, Presentation, IAEA SMR Technology Workshop
- [6] IAEA, Advances in Small Modular Reactor Technology Developments, 2020 Edition
- [7] Direction des Constructions Navales, DCNS, Flexblue: a Subsea Reactor Project Considerations for its licensing Presentation, July 2013

This project has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 847553.