

International Summer School on Early-Deployable SMRs

2022

HOW TO DESIGN AN EXPERIMENTAL FACILITY

SIET S.p.A.

Roberta Ferri

Politecnico di Milano Lake of Lecco July 7, 2022

IFLSMOR

CONTENT

Need of experimental facilities Need of an experimental facility in the ELSMOR project Design of an experimental rig: the ELSMOR facility Scaling Mechanical design Instrumentation and Data Acquisition system Testing Data analysis Code validation

NEED OF EXPERIMENTAL FACILITIES

The design and certification of a new nuclear power plant, be it a SMR, requires the execution of experimental tests for different goals:

- the independent verification of the functionality of systems devoted to the safety of the plant, e.g. DHRS. In this case, Separate Effect Test (SET) facilities are necessary;
- the verification of the behavior of the integral system, e.g. primary loop, secondary loops and also containment. In this case, Integral Test Facilities (ITF) are necessary;
- the validation of system codes, e.g. Relap5, Cathare, etc., on qualified experimental data to perform Reactor system analyses versus postulated accidents devoted to obtain the final reactor certification.

NEED OF AN EXPERIMENTAL FACILITY IN THE ELSMOR PROJECT

The need of an experimental facility in the ELSMOR project has basically three goals:

- Indicate the route on how to perform an experimental campaign to the European Regulator called to certify SMRs in Europe;
- test a passive decay heat removal system, to be potentially installed on the E-SMR, based on a compact plate-type heat exchanger included in a natural circulation loop that rejects heat into a water pool;
- validate different codes in pre-test and post-test analyses.

DESIGN OF AN EXPERIMENTAL RIG: THE ELSMOR FACILITY

The ELSMOR facility is a SET loop devoted to test a PDHR system that includes a plate-type heat exchanger (S-CSG Safety-Compact Steam Generator) installed in a natural circulation loop that rejects heat into a water pool by means of a vertical tube heat exchanger.

The potential use of a plate-type heat exchanger in an integral type SMR has the advantage of high power transfer in an extremely compact configuration. It is the first time this kind of heat exchanger is proposed to be part of a nuclear power plant for civil use, so it may require a wide experimentation before the application for licensing.

In general, the design of a facility starts from a technical specification indicating:

- the goal of testing;
- the scaling factors (elevation, volume, power scale);
- the phenomena of interest to be reproduced and investigated;
- the required characteristics of instrumentation and Data Acquisition System (e.g. accuracy, sampling frequency, etc.);
- the Test Matrix.

THE ELSMOR FACILITY: SCALING

Reference reactor E-SMR

Electric power ~170 MW Thermal Power ~515 MW 2 Loops EHRS Decay power per loop ~30 MW (decay power ~10% reactor power/2 ~26 MW)

The scaling for the ELSMOR facility mainly focuses on two aspects:

- heat exchanger power and pressure drops;
- loop pressure drops.

Type-plate heat exchanger specification

HX power ~500 kW HX primary side pressure drops ~12 kPa (at 2.8 kg/s nominal flowrate) HX secondary side pressure drops ~30 kPa (at 0.4 kg/s nominal flowrate)

Natural circulation loop specified height ~6 m.

ELSMOR facility scaling factors:

6

Elevation 1:1 Power ~1: 50

ELSMOR FACILITY SIMPLIFIED SCHEME

Total height: ~ 15 m Power ~ 1 MW (Plate-type HX power ~600 kW) Primary side P 15.5 MPa; T 310 °C Secondary side P: 10 MPa; T 315 °C In-pool HX: 5 tubes, 2-inch diameter, ~2 m lenght

Cylindrical water pool:

~ 5 m³ volume,

∼ 6 m height, atmospheric pressure

IELSMOR

ELSMOR facility HEAT EXCHANGER

HX Specification

Design conditions	Primary side	Secondary side
Pressure (bar abs)	130	100
Temperature (°C)	325	325
Operating conditions	Primary side	Secondary side
Pressure (bar abs)	1 - 116	0.023 - 80
Temperature (°C)	20 - 320	20 - T_prim
Mass flow (kg/s)	~2.8	~0.4
Pressure drops (kPa)	12 (at 2.8 kg/s)	30 (at 0.4 kg/s)

Primary and secondary side volume ~15 - 20 I (each side)

Nominal power 500 kW (with ~11 plates) Height (m) ~ 2.70 (exchanging part) Width (m) ~ 0.45 Thickness (m) ~ 0.11 (of which about 1/3 occupied by plates) Heat transfer surface ~13 m²

8

Commercial HX chosen

TEMPCO Model TCBC2102H*130

Design conditions		Primary side	Secondary side
Pressure (bar abs)		140	100
Temperature (°C)		310	310
Operating condition	าร	Primary side	Secondary side
Pressure (bar abs)		1 - 116	0.023 - 80
Temperature (°C)		20 - 310	20 - T_prim
Mass flow (kg/s)		~3.9 (Note 1)	~0.4
Pressure drops (kPa	a)	31.6 (at 3.9 kg/s)	14.4 (at 0.4 kg/s)

Primary and secondary side volume ~10 l (with 130 plates) each side Power ~600 kW (with 130 plates) Height (m) ~ 0.5 (exchanging part)

Width (m) ~ 0.2

Thickness (m) ~ 0.30 (with 130 plates)

Heat transfer surface ~12.16 m² (with 130 plates)

Realization with 8 nozzles (double inlet/double outlet) to have spare ones for instrumentation installation

Note 1: Primary side mass flow increase with respect to TA to have adequate PS outlet temperature higher than SS saturation temperature at 70 bar.

HX HEAT TRANSFER COEFFICIENT verification BY TEMPCO CALCULATIONS

An estimation of the heat transfer coefficients was performed on the basis of the results of TEMPCO calculations for different cases: the hliq was obtained from the symmetric case and used to calculate both the h*stm* in the superheated steam case and the h*ss* in the base case. The h*stmcnd* was obtained by the h*ss* from the base case.

	Symmetric case	Superheated steam case	Base case	Two-phase Case
	PS Liquid - SS Liquid	PS liquid - SS Superheated steam	PS Liquid - SS evaporating	PS condensig - SS evaporating
Heat transfer coefficient				
Power (kW)	1402.24	6.85	602.4	606.8
DT log mean (°C)	19.915	1.477	9.276	34.20
Heat transfer area (m2)	12.16	12.16	12.16	12.16
Plate thickness (m)	0.001	0.001	0.001	0.001
AISI 316 themal conductivity (W/(mK))	16.2	16.2	16.2	16.2
Global heat transfer coefficient (W/(m ² K))	5790.4	381.4	5340.6	1459.1
	1 1 s 1	1 1 s 1	1 - 1 + s + 1	1 - 1 + s + 1
	$htot hliq k^{\dagger}hliq$	$\frac{1}{htot} - \frac{1}{hliq} + \frac{1}{k} + \frac{1}{hstm}$	$htot hliq k^{+}hss$	htot hstmcnd k hss
		Heat transfer coefficient hstm	Heat transfer coefficient hss	Heat transfer coefficient
	Heat transfer coefficient hliq is	obtained by hliq previouly	obtained by hliq previouly	hstmcnd obtained by hss
	equal both sides	calculated	calculated	previouly calculated
hliq (W/(m2K))	18022.7			
hstm (W/(m2K)) superheated		399.2		
hss (W/(m2K)) (evaporating)			14279.5	
hstm cnd (W/(m2K)) (condensing)				1806.4

9

ELSMOR

DETAILS of TEMPCO HEAT EXCHANGER

Drawing SIET 122.00.006 Rev.3

10

IELSMOR

European

MECHANICAL DESIGN Steam-Water separator (S-CSG bypass)

Drawing SIET 122.00.003 Rev.3

12

IELSMOR

MECHANICAL DESIGN Primary side piping

TEMPCO PS HX inlet pipe

IELSMOR

Drawing SIET 122.00.005 Rev.4 Sheet 2 of 7

TEMPCO PS HX outlet pipe

Drawing SIET 122.00.005 Rev.4 Sheet 1 of 7

Drawing SIET 122.00.005 Rev.4 Sheet 3 of 7

14

Drawing SIET 122.00.005 Rev.4 Sheet 4 of 7

IELSMOR

MECHANICAL DESIGN In-pool heat exchanger

Drawing TECNIM 4422-11 Rev.04

MECHANICAL DESIGN Heat exchanger Pool

16

IELSMOR

FACILITY LAYOUT VERIFICATION BY CODE SIMULATIONS

The RELAP5 code was used for the simulation of the natural circulation loop at the nominal operating conditions with the main goal of:

- verifying the size of the pipes;
- verifying the heat transfer capability of the loop.

Critical parameters in the simulation:

- Pressure drops in the piping;
- Heat transfer coefficients for both HXs;
- Filling ratio of the loop.

FACILITY LAYOUT VERIFICATION BY CODE SIMULATIONS

RELAP5 simulation of a transient included in the Test Matrix

Gro	up	Test N.	PC pressur e	PC temp.	PC total flow rate	PC condition s	PC HL flow rate	SC FR	SC initial temp.	Pool temp.	Pool initial level	Orifice on PC HL	SC CL valve positio n	SC N ₂ injection	Notes
N		N.	bar	°C	kg/s	single/tw o-phase	kg/s	%	°C	°C	m	b (d/D ratio)	closing turns	NI	
		16	120	310	23.5	1-P	3.4	30	30	30	5	1	0	0	Start-up
		17	120	320	23.5	1-P	3.4	30	TBD	30- 100	5	1	0	0	Transient + steady state
4		18	120	290	23.5	1-P	3.4	30	TBD	100	5	1	0	0	Tests at reduce PS temperature (power)
		19	120	260	23.5	1-P	3.4	30	TBD	100	5	1	0	0	Tests at reduce PS temperature (power)
		20	120	320	23.5	1-P	3.4	30	TBD	100	2.3	1	0	0	Test at reduced level in the Pool

Time [s]	Test - event
0-1000	Initial cold conditions, mass reduction in the SC to obtain the FR
1000-3000	Test 16: start-up with PC temperature 310°C
1050	Start PC mass flow rate
1100	Start PC temperature ramp
3000	Opening SC control valve
3000-6000	Test 17: transient+steady state with PC temperature 320°C
4000	PC temperature rise from 310°C to 320°C
6000-7000	Test 18: test at reduced PS temperature (290°C)
7000-8000	Test 19: test at reduced PS temperature (260°C)
8000-12000	Test 20: Test at reduced level in the Pool (2.3 m)
8500	Opening pool discharge valve

FACILITY LAYOUT VERIFICATION BY CODE SIMULATIONS

RELAP5 results of the simulation of a transient included in the Test Matrix

The results show that the natural circulation develops in the secondary side and no criticalities are evidenced in the design.

INSTRUMENTATION

The choice of instrumentation to be installed on a facility is made on the basis of:

- Measurement range;
- Instrument accuracy.

All the instruments must be calibrated in a calibration laboratory and calibration certificates must be checked and confirmed by qualified personnel before the installation on the loop.

Example of instrument table and needed information.

N.	Location	Instrument type	Manufact urer	Model	Plant code	SIET code	HP tap	LP tap	P1 Azth	P1 P1 e	Nozzle levatio n	P1 hsl	P1 hss	P1 hcl	P2 P ele	P2 No ev. elev	ozzle evatio n	2 F sl h	ss I	P2 In hcl Ele	nstrum. levation	Head	Span	M.U.	LRV	URV	hcl net	hsl net	hss net	М	Q	к	Manufact.Error	Notes
							(+)	(-)	(°)	(m)	(m)	(m)	(m)	(m)	(r	m) (I	(m) (r	m) (r	n) ((m)	(m)	(m)	M.U.	I	M.U. I	И.U.	(m)	(m)	(m)	(M.U./m V)	(M.U.) ⁽	(M.U.)	(+/- M.U.)	
1	SG Bypass (pump side) feedwater inlet mass flow	Orifice+ DP transmitter	Honeywe II	STD830	F100 1A	18166	M18	M19 M1	8 n.a.	- 0.257	NA	NA	NA	1.203 N	/19-0.2	257 N	NA N	IA N	A 1.	.203 -	-1.460	0.000	#VALO RE!	kPa	TBD	TBD	0						0.280	
2	SG Bypass (pump side) feedwater inlet mass flow (Low Span)	Orifice+ DP transmitter	Honeywe II	STD120	F100 1B	14722	M18	M19 M1	8 n.a.	- 0.257	NA	NA	NA	1.203 N	/19-0.2	257 N	NA N	IA N	A 1.	.203 -	-1.460	0.000	#VALO RE!	kPa	TBD	TBD	0						0.010	
3	Primary side pressurizer pressure	relative P transmitter	Honeywe II	STG870	P100 4	22831	M24	M2	4 n.a.	11.72 0				9.045						:	2.675	9.045	13	MPa	0	13	9.045	0	0	3.24982	- 3.249 ⁽ 42	0.101 3	0.010	
4	Total DP across the pool (Pool Level)	DP - Transm.	Honeywe II	STD820	DP- 001		M20	M21 M2	0	20.97 8				20.97 8N	15 121	5.59 5			1	.5.59 5		5.383	90	kPa	-10	80	5.383							
5	IN POOL HEX TOTAL DP	DP - Transm.	Honeywe II	STD820	DP- 002		M15	M14 M1	5	19.07 1				19.07 1№	15 114	5.75 9			1	.5.75 9		3.312	60	kPa	-10	50	3.312							

The instruments in the ELSMOR facility are ~150.

20

The Data Acquisition System consists of Data acquisition boards cabled to each instrument that transmit the signals via ethernet to a PC.

The DAS boards for the ELSMOR facility are manufactured by National Instruments and the DAS program running on the PC is developed in NI-LabView ambient.

Intrument table

S 221		111121		
Sec. 11				
Mic II	101			
	10.L			
WHEN THE				
100108 1001				

Data Acquisition System

The choice of DAS components and boards is made on the basis of:

- DAS board accuracy;
- Type to signal to be recorded (e.g. high level 1 10 V; low level ± 50 mV);
- Sampling frequency.

21

All the DAS boards must be calibrated in a calibration laboratory and calibration certificates must be checked and confirmed by qualified personnel before the installation and cabling.

The Data Acquisition System consists of Data acquisition boards hosted in Chasses each cabled to instruments and the signals are transmitted via ethernet to a PC.

The Chassis and board manufacture is National Instruments.

The DAS program that runs on the PC is developed in NI-LabView ambient.

It performs the raw data acquisition (Volt), the conversion to Engineering units (e.g. Pa) and to derived quantities (e.g. Kg/s).

Scheme of a DAS based on NI components

ELSMOR

TEST MATRIX

The definition of the Test Matrix is done on the basis of:

- the phenomena to be investigated;
- the optimization of the facility operation;
- the need of specific experimental data for code validation;
- The energy cost optimization.

The Test Matrix for the ELSMOR facility consists of 62 test points grouped in 8 sections to optimize the operation.

They include tests at different filling ratios of the secondary loop and at different Primary Side temperature and flowrate conditions.

The non-condensable gas injection is also foreseen.

	-	LIMON IN	est Matria												
	~	-	to be incestigo	net i											
		timary sid	in presser (Prime repr in the second sole filling ratio	ry temperation) stary side testand	circulation long :	m the Calif Log and I	ur Lag								
			erature is the i numble gat in the	vad a secondary side a or two-phase co	-										
		note for to	ating Sart-up of	the secondary in	fe at sold condition	on he establishing the	a specified filling or	to by renexing an	and watter in exce	is by resarc of a r	acam pan	•			
•	-	Not No.	PS Pressure	P) hengenature	Ph total filmenals	ri conditions	PC N. Rowrate	sc tilling hatte	sciellar Imperators	~	nan sala	officer K.M.	SC CL subm position	SC N ₂ injection	Refers
1		-	120	71	8g/k 23.5	single, Tano phase	Agh 3.4	36 15	2	2	7	P (472-see	closing horns	:	Tather
		2	628	328	28.8	2.0	3.6	88	180	30-100	8				Transient - steady state
	*	:	528	290	25.5	10	14	15	180	100	- 2		:	:	Texts at reduce PS temperature (power) Texts at reduce PS temperature (power)
		8	820	320	25.8	1.0	3.4	88	180	300	2.5				Test at reduced level in the Push
			8.00	200	25.5	1.0	3.4	-							Bart-op
			120	100	28.5			-	100	10.000					Transferd + shouly state Tests at radius P1 testing stars (second)
	70		529	240	33.8	1.0	3.6	26	180	100					Texts at reduce PS temperature (power)
		38	329	829	28.5	14	1.4	38	190	100	2.8	3			Test at reduced level in the Paul
		88.	539	348	29.5		3.4	25	340	30					Bat-g
			128	100	25.5	1.0	14	10	100	10.000					Transant - clearly state Tests at rankes PC instance state (assess)
		54	529	296	28.8	5.0	3.4	28	180	300	5	1			Tests at roduce P) temperature (preset)
		10	1.20	520	28.9	1.0	1.4	28	160	100	1.8				Test & reduced level in the Paul
		36	129	248	29.9	3.0	3.4		**	30					Sate
		17	128	520	355	14	14		780	30-100			:		Transant - clearly state Tests at reduce P1 temperature langed
		18	220	2907	28.9	2.0	5.4		180	100		i.			Tests at reduce P3 temperature (prever)
		38	629	338	28.8		3.4	30	180	100	2.5				Text at induced level in the Paul
		28	3.20	200	25.7	2.0	5.4	-							Start-up with increased pressure drops on the O.
	۰.	22	120	5.08	25.5		14	-	180	10-100	- 2 -				Transient + meanly state with increased pressure drips a Transfe data with increased answers draw on the C
		24	120	\$20	25.8	1.0	3.4	-	780	199		÷ .	8		literally state with increased pressure drops on the G.
		25	1.20	240	255		14								Bart on with increased pressure drops on the H.
		26	538	338	28.5	5.0	3.4		-	30-100	8	8.7			Transient - shouly state with increased pressure drops
		27	120	388	23.8	1.0	3.4				5			100	Bat-o
	¥.;	28	3.29	329	28.8	3.0	2.4		190	39-136		3		3.00	Transient + iterady state
		10	520	1.00	28.5		14		180	100	- 1			200	linedy date with recreased non-condemative
			1000	100	100	1.00		-	140				0.00		Not on
		ñ	529	3.08	29.9	1.0	14	-	190	39.500	5				Translasse - cheady state
		88	129	290	28.8	1.0	3.4	-	180	1000					Texts at reduce PS temperature (preset)
			328	529	23.3	1.0	5.4	-	780	100	2.5				Test at reduced level in the Paul
			120	***	29.9		14								Name and Address of Address of States on the Co.
1		87	129	529	25.5	1.0	5.4	-	180	30.000		i.			Transford + steady state with increased pressure drops a
			5.20	329	25.5		14	-	180	100	-				Steady state with increased pressure drops on the C. Neady state with increased pressure drops on the C.
			1	100				- 24			- S	- C	- 24		
		41	129	338	23.5	1.0	14	-	180	10-100	-		:	:	Transient - steady state
	40	42	3.29	298	23.8		3.4	50	190	100	5				Tests at reduce PS temperature (power)
			620	100	25.5	5.0	3.4	-	794	-					Text at reduce Ps temperature general
		2	129	738	23.5	17	5.4	=		10.000			:	:	Start-op Transient - clearly state
16	88	-	120	299	28.9	1.0	2.4	-	190	100					Texts at reduce #5 temperature (power)
		-	120	200	25.5	14	14		190	100			:		Texts at reduce PS temperature (prese) Text at endored least in the text
				10756						222.0					
			100	THE OWNER.	23.5	2.0									No. or Tax to the Leasening
	12	50		And the local	25.5	2.0		28	190	30-100	5				No or Fica in the Separator
	82	50 51	100												No. of the in the langestor
		50 51 N	100	INCM DAD	28.5	2.0									
	N.	90 55 51 51 51		100 M (140)	23.5	20		=	180	39-100	1	*			No or Rea in the Separator
	u U	9 1 2 2 3 4			23.5 23.5 23.5	20 20 20		-	-	30.000	,	,	:		No orfice in the Separator No orfice in the Separator
	52 53		1 11 111		23.5 23.5 23.5 23.5 23.5 23.5	11 111		-		30-100 30-100	-	1	÷	÷	No orfice in the legenster No orfice in the legenster No orfice in the legenster No orfice in the legenster
	12 13		1 11 1111	110 H (H) 110 H (H) 110 H (H) 110 H (H) 110 H (H) 110 H (H)	103 103 103 103 103	22 22 22		-	1 1 1 1	50 100 30 100 30 100 300	*	1	i	-	No orfice in the Separator No orfice in the Separator No orfice in the Separator No orfice in the Separator No orfice in the Separator
	N N M		1 11 1111	110 H (M) 110 H (M) 110 H (M) 110 H (M) 110 H (M) 110 H (M)	113 113 113 113 113	*****			1111	***		1	i		No office in the Separator No office in the Separator No office in the Separator No office in the Separator No office in the Separator
	12 13				113 113 113 113 113 113	14 14 14 14 14			1 111 1			1	į		No office in the Separate No office in the Separate

TEST EXECUTION, DATA ANALYSES AND CODE VALIDATION

The tests execution can start only after the instrument check is performed at the beginning of the testing day and it is verified all of them are within certain specified limits (Hydro-zero check).

Once experimental data are available, first a data analysis is performed to verify that the phenomena of interest are captured.

Then, data can be used for code validation with the execution of post-test analyses.

Time Schedule for ELSMOR Facility Realization and Testing

- Design review and finalization (by February 2022)
- Procurement (by May 2022)
- Test facility realization (by August 2022)
- Test facility Commissioning (by October 2022)
- Testing (by December 2022)
- Data validation and reporting (by January 2023)

25

- Gantt chart

training programme 2014-2018 under Grant Agreement No. 847553.