

Towards European Licensing of Small Modular Reactors

ELSMOR

International Summer School on N Early-deployable Small Modular Reactors

July, Tue 5 - Fri 8

Working Groups – SMR exercise 2: natural circulation calc.

ELSMOR 2022 International Summer School on Early-deployable Small Modular Reactors

ENEN

©fortum framatome

Natural Circulation SMR		
Reactor Thermal Power	300 MWth	W
Tcore in	292 degC	Tin
enthalpy-in	1300 kJ/kg	hin
density-in	727.6 kg/m ³	ρin
Tcore out	329 degC	Tout
enthalpy-out	1520 kJ/kg	hout
density-out	643.5 kg/m ³	ρout
Primary pressure	155 bar	Pc
# Fuel assemblies	121	Nfa
Fuel assembly (fuel rods)	(17 x 17)	
Fuel rod diam.	9.5 mm	Dfr
Fuel rod pitch	12.67 mm	Pfr
Fuel rod length	3 m	Lfr
Once-Through Steam Generator		
SG Tube outer diam.	10 mm	OD
SG Tube inner diam.	8.5 mm	ID
SG Tube pitch	15 mm	Psg
SG pressure	65 bar	Ps
Tsat (@65 bar)	280.82 degC	Tsg
Tube thermal conductivity	30 W/m K	Ksg
RPV inner diam.	3.75 m	
Barrel outer diam.	2.75 m	
Global heat transfer coeff.	$5100 \text{ W/m}^2 \text{ K}$	α
Form pressure loss coeff.		
Core support plate	4	K1
Core upper plate	4	K2
SG area - inlet	3.5	K3
SG area - outlet	3.5	K4
Fuel rod, SG tube roughness	4x10 ⁻⁶ m	е
Fluid viscosity	8.284x10 ⁻⁵ kg/m s	μ

RSN

SMR: Integral PWR type Full natural circulation

Calculate:

SIE

7A

EE

- 1. The length L of the Steam Generator tube bundle
- 2. The gap/clearance H from core top to SG bottom, to sustain the natural circulation

Towards European Licensing og Small Modular Reactors

ELSMOR 2022 International Summer School on Early-deployable Small Modular Reactors

Thermal power transferred to SG:

Number of SG tubes Nt (approx.): (SG tube lattice area = Pitch²)

SG heat transfer surface S:

 $W_{SG} = \alpha S \Delta T$

Nt = 80% x Annular area / SG tube lattice area

 $S = L \pi D Nt$

@fortum framatome

Primary-Secondary Temp. jump ΔT : $\Delta T = (logaritmic average)$

ENEL

Pede

ENERGORISK

(T_{out} - T_{sg}) - (T_{in} - T_{sg}) In [(T_{out} - T_{sg}) / (T_{in} - T_{sg})]

EE

ELSMOR 2022 International Summer School on Early-deployable Small Modular Reactors

Reactor core flow rate Γ :

Fluid velocity v:

Local pressure drops:

Distributed pressure drops:

Friction factor:

Reynolds number:

Equivalent hydraulic diameter:

POF

ENEL

ENERGORISK

Fluid cross section area Ω (see figure), Wetted perimeter $\Pi = \pi D$

Ofortum framatome

$$\Gamma = \rho v Ω_{total}$$

$$\Delta Pc = K \rho v^{2}/2$$

$$\Delta Pf = L 2 f Γ^{2} / (\rho D_{eq} Ω^{2})$$

$$f = [3.8 log_{10} (10/Re + 0.2 e/D_{eq})]^{-2}$$

Re = $\rho v D_{eq} / \mu$

 $W = \Gamma (h_{out} - h_{in})$

 $D_{eq} = 4 \Omega / \Pi$

SIE

